Distributed Parameter Estimation in Randomized One-hidden-layer Neural Networks

20 Sep 2019  ·  Yinsong Wang, Shahin Shahrampour ·

This paper addresses distributed parameter estimation in randomized one-hidden-layer neural networks. A group of agents sequentially receive measurements of an unknown parameter that is only partially observable to them. In this paper, we present a fully distributed estimation algorithm where agents exchange local estimates with their neighbors to collectively identify the true value of the parameter. We prove that this distributed update provides an asymptotically unbiased estimator of the unknown parameter, i.e., the first moment of the expected global error converges to zero asymptotically. We further analyze the efficiency of the proposed estimation scheme by establishing an asymptotic upper bound on the variance of the global error. Applying our method to a real-world dataset related to appliances energy prediction, we observe that our empirical findings verify the theoretical results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here