1st Place Solution to ICDAR 2021 RRC-ICTEXT End-to-end Text Spotting and Aesthetic Assessment on Integrated Circuit

8 Apr 2021  ·  Qiyao Wang, Pengfei Li, Li Zhu, Yi Niu ·

This paper presents our proposed methods to ICDAR 2021 Robust Reading Challenge - Integrated Circuit Text Spotting and Aesthetic Assessment (ICDAR RRC-ICTEXT 2021). For the text spotting task, we detect the characters on integrated circuit and classify them based on yolov5 detection model. We balance the lowercase and non-lowercase by using SynthText, generated data and data sampler. We adopt semi-supervised algorithm and distillation to furtherly improve the model's accuracy. For the aesthetic assessment task, we add a classification branch of 3 classes to differentiate the aesthetic classes of each character. Finally, we make model deployment to accelerate inference speed and reduce memory consumption based on NVIDIA Tensorrt. Our methods achieve 59.1 mAP on task 3.1 with 31 FPS and 306M memory (rank 1), 78.7\% F2 score on task 3.2 with 30 FPS and 306M memory (rank 1).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here