2-D Embedding of Large and High-dimensional Data with Minimal Memory and Computational Time Requirements

4 Feb 2019 Witold Dzwinel Rafal Wcislo Stan Matwin

In the advent of big data era, interactive visualization of large data sets consisting of M*10^5+ high-dimensional feature vectors of length N (N ~ 10^3+), is an indispensable tool for data exploratory analysis. The state-of-the-art data embedding (DE) methods of N-D data into 2-D (3-D) visually perceptible space (e.g., based on t-SNE concept) are too demanding computationally to be efficiently employed for interactive data analytics of large and high-dimensional datasets... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet