2D Visual Place Recognition for Domestic Service Robots at Night

25 May 2016  ·  James Mount, Michael Milford ·

Domestic service robots such as lawn mowing and vacuum cleaning robots are the most numerous consumer robots in existence today. While early versions employed random exploration, recent systems fielded by most of the major manufacturers have utilized range-based and visual sensors and user-placed beacons to enable robots to map and localize... However, active range and visual sensing solutions have the disadvantages of being intrusive, expensive, or only providing a 1D scan of the environment, while the requirement for beacon placement imposes other practical limitations. In this paper we present a passive and potentially cheap vision-based solution to 2D localization at night that combines easily obtainable day-time maps with low resolution contrast-normalized image matching algorithms, image sequence-based matching in two-dimensions, place match interpolation and recent advances in conventional low light camera technology. In a range of experiments over a domestic lawn and in a lounge room, we demonstrate that the proposed approach enables 2D localization at night, and analyse the effect on performance of varying odometry noise levels, place match interpolation and sequence matching length. Finally we benchmark the new low light camera technology and show how it can enable robust place recognition even in an environment lit only by a moonless sky, raising the tantalizing possibility of being able to apply all conventional vision algorithms, even in the darkest of nights. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here