3D Human Action Recognition with Siamese-LSTM Based Deep Metric Learning

5 Jul 2018 Seyma Yucer Yusuf Sinan Akgul

This paper proposes a new 3D Human Action Recognition system as a two-phase system: (1) Deep Metric Learning Module which learns a similarity metric between two 3D joint sequences using Siamese-LSTM networks; (2) A Multiclass Classification Module that uses the output of the first module to produce the final recognition output. This model has several advantages: the first module is trained with a larger set of data because it uses many combinations of sequence pairs.Our deep metric learning module can also be trained independently of the datasets, which makes our system modular and generalizable... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

Sigmoid Activation
Activation Functions
Tanh Activation
Activation Functions
Recurrent Neural Networks