3D Single Source Localization Based on Euclidean Distance Matrices

18 May 2022  ·  Klaus Brümann, Simon Doclo ·

A popular approach for 3D source localization using multiple microphones is the steered-response power method, where the source position is directly estimated by maximizing a function of three continuous position variables. Instead of directly estimating the source position, in this paper we propose an indirect, distance-based method for 3D source localization. Based on properties of Euclidean distance matrices (EDMs), we reformulate the 3D source localization problem as the minimization of a cost function of a single variable, namely the distance between the source and the reference microphone. Using the known microphone geometry and estimated time-differences of arrival (TDOAs) between the microphones, we show how the 3D source position can be computed based on this variable. In addition, instead of using a single TDOA estimate per microphone pair, we propose an extension that enables to select the most appropriate estimate from a set of candidate TDOA estimates, which is especially relevant in reverberant environments with strong early reflections. Experimental results for different source and microphone constellations show that the proposed EDM-based method consistently outperforms the steered-response power method, especially when the source is close to the microphones.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here