4-DoF Tracking for Robot Fine Manipulation Tasks

6 Mar 2017  ·  Mennatullah Siam, Abhineet Singh, Camilo Perez, Martin Jagersand ·

This paper presents two visual trackers from the different paradigms of learning and registration based tracking and evaluates their application in image based visual servoing. They can track object motion with four degrees of freedom (DoF) which, as we will show here, is sufficient for many fine manipulation tasks... One of these trackers is a newly developed learning based tracker that relies on learning discriminative correlation filters while the other is a refinement of a recent 8 DoF RANSAC based tracker adapted with a new appearance model for tracking 4 DoF motion. Both trackers are shown to provide superior performance to several state of the art trackers on an existing dataset for manipulation tasks. Further, a new dataset with challenging sequences for fine manipulation tasks captured from robot mounted eye-in-hand (EIH) cameras is also presented. These sequences have a variety of challenges encountered during real tasks including jittery camera movement, motion blur, drastic scale changes and partial occlusions. Quantitative and qualitative results on these sequences are used to show that these two trackers are robust to failures while providing high precision that makes them suitable for such fine manipulation tasks. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here