6-DoF Object Pose from Semantic Keypoints

This paper presents a novel approach to estimating the continuous six degree of freedom (6-DoF) pose (3D translation and rotation) of an object from a single RGB image. The approach combines semantic keypoints predicted by a convolutional network (convnet) with a deformable shape model... Unlike prior work, we are agnostic to whether the object is textured or textureless, as the convnet learns the optimal representation from the available training image data. Furthermore, the approach can be applied to instance- and class-based pose recovery. Empirically, we show that the proposed approach can accurately recover the 6-DoF object pose for both instance- and class-based scenarios with a cluttered background. For class-based object pose estimation, state-of-the-art accuracy is shown on the large-scale PASCAL3D+ dataset. read more

PDF Abstract

Datasets


Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Keypoint Detection Pascal3D+ ConvNet + deformable shape model Mean PCK 82.5 # 1

Methods


No methods listed for this paper. Add relevant methods here