ACT2: A multi-disciplinary semi-structured dataset for importance and purpose classification of citations

Classifying citations according to their purpose and importance is a challenging task that has gained considerable interest in recent years. This interest has been primarily driven by the need to create more transparent, efficient, merit-based reward systems in academia; a system that goes beyond simple bibliometric measures and considers the semantics of citations. Such systems that quantify and classify the influence of citations can act as edges that link knowledge nodes to a graph and enable efficient knowledge discovery. While a number of researchers have experimented with a variety of models, these experiments are typically limited to single-domain applications and the resulting models are hardly comparable. Recently, two Citation Context Classification (3C) shared tasks (at WOSP2020 and SDP2021) created the first benchmark enabling direct comparison of citation classification approaches, revealing the crucial impact of supplementary data on the performance of models. Reflecting from the findings of these shared tasks, we are releasing a new multi-disciplinary dataset, ACT2, an extended SDP 3C shared task dataset. This modified corpus has annotations for both citation function and importance classes newly enriched with supplementary contextual and non-contextual feature sets the selection of which follows from the lists of features used by the more successful teams in these shared tasks. Additionally, we include contextual features for cited papers (e.g. Abstract of the cited paper), which most existing datasets lack, but which have a lot of potential to improve results. We describe the methodology used for feature extraction and the challenges involved in the process. The feature enriched ACT2 dataset is available at https://github.com/oacore/ACT2.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here