Neural Decipherment via Minimum-Cost Flow: from Ugaritic to Linear B

ACL 2019  ·  Jiaming Luo, Yuan Cao, Regina Barzilay ·

In this paper we propose a novel neural approach for automatic decipherment of lost languages. To compensate for the lack of strong supervision signal, our model design is informed by patterns in language change documented in historical linguistics. The model utilizes an expressive sequence-to-sequence model to capture character-level correspondences between cognates. To effectively train the model in an unsupervised manner, we innovate the training procedure by formalizing it as a minimum-cost flow problem. When applied to the decipherment of Ugaritic, we achieve a 5.5% absolute improvement over state-of-the-art results. We also report the first automatic results in deciphering Linear B, a syllabic language related to ancient Greek, where our model correctly translates 67.3% of cognates.

PDF Abstract ACL 2019 PDF ACL 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here