A 3D Non-Stationary Channel Model for 6G Wireless Systems Employing Intelligent Reflecting Surface

3 Dec 2020  ·  Yingzhuo Sun, Cheng-Xiang Wang, Jie Huang, Jun Wang ·

As one of the key technologies for the sixth generation (6G) mobile communications, intelligent reflecting surface IRS) has the advantages of low power consumption, low cost, and simple design methods. But channel modeling is still an open issue in this field currently. In this paper, we propose a three-dimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (MIMO) communication system employing IRS. The model supports the movements of the transmitter, the receiver, and clusters. The evolution of clusters on the linear array and planar array is also considered in the proposed model. In addition, the generation of reflecting coefficient is incorporated into the model and the path loss of the sub-channel assisted by IRS is also proposed. The steering vector is set up at the base station for the cooperation with IRS. Through studying statistical properties such as the temporal autocorrelation function and space correlation function, the nonstationary properties are verified. The good agreement between the simulation results and the analytical results illustrates the correctness of the proposed channel model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here