A Bayesian Approach to Identifying Representational Errors

28 Mar 2021  ·  Ramya Ramakrishnan, Vaibhav Unhelkar, Ece Kamar, Julie Shah ·

Trained AI systems and expert decision makers can make errors that are often difficult to identify and understand. Determining the root cause for these errors can improve future decisions. This work presents Generative Error Model (GEM), a generative model for inferring representational errors based on observations of an actor's behavior (either simulated agent, robot, or human). The model considers two sources of error: those that occur due to representational limitations -- "blind spots" -- and non-representational errors, such as those caused by noise in execution or systematic errors present in the actor's policy. Disambiguating these two error types allows for targeted refinement of the actor's policy (i.e., representational errors require perceptual augmentation, while other errors can be reduced through methods such as improved training or attention support). We present a Bayesian inference algorithm for GEM and evaluate its utility in recovering representational errors on multiple domains. Results show that our approach can recover blind spots of both reinforcement learning agents as well as human users.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here