Paper

A Bayesian Approach to Rule Mining

In this paper, we introduce the increasing belief criterion in association rule mining. The criterion uses a recursive application of Bayes' theorem to compute a rule's belief. Extracted rules are required to have their belief increase with their last observation. We extend the taxonomy of association rule mining algorithms with a new branch for Bayesian rule mining~(BRM), which uses increasing belief as the rule selection criterion. In contrast, the well-established frequent association rule mining~(FRM) branch relies on the minimum-support concept to extract rules. We derive properties of the increasing belief criterion, such as the increasing belief boundary, no-prior-worries, and conjunctive premises. Subsequently, we implement a BRM algorithm using the increasing belief criterion, and illustrate its functionality in three experiments: (1)~a proof-of-concept to illustrate BRM properties, (2)~an analysis relating socioeconomic information and chemical exposure data, and (3)~mining behaviour routines in patients undergoing neurological rehabilitation. We illustrate how BRM is capable of extracting rare rules and does not suffer from support dilution. Furthermore, we show that BRM focuses on the individual event generating processes, while FRM focuses on their commonalities. We consider BRM's increasing belief as an alternative criterion to thresholds on rule support, as often applied in FRM, to determine rule usefulness.

Results in Papers With Code
(↓ scroll down to see all results)