A centralized reinforcement learning method for multi-agent job scheduling in Grid

11 Sep 2016Milad Moradi

One of the main challenges in Grid systems is designing an adaptive, scalable, and model-independent method for job scheduling to achieve a desirable degree of load balancing and system efficiency. Centralized job scheduling methods have some drawbacks, such as single point of failure and lack of scalability... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet