A characterization of product-form exchangeable feature probability functions

7 Jul 2016  ·  Marco Battiston, Stefano Favaro, Daniel M. Roy, Yee Whye Teh ·

We characterize the class of exchangeable feature allocations assigning probability $V_{n,k}\prod_{l=1}^{k}W_{m_{l}}U_{n-m_{l}}$ to a feature allocation of $n$ individuals, displaying $k$ features with counts $(m_{1},\ldots,m_{k})$ for these features. Each element of this class is parametrized by a countable matrix $V$ and two sequences $U$ and $W$ of non-negative weights. Moreover, a consistency condition is imposed to guarantee that the distribution for feature allocations of $n-1$ individuals is recovered from that of $n$ individuals, when the last individual is integrated out. In Theorem 1.1, we prove that the only members of this class satisfying the consistency condition are mixtures of the Indian Buffet Process over its mass parameter $\gamma$ and mixtures of the Beta--Bernoulli model over its dimensionality parameter $N$. Hence, we provide a characterization of these two models as the only, up to randomization of the parameters, consistent exchangeable feature allocations having the required product form.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here