A Charge-Density-Wave Topological Semimetal

9 Sep 2019  ·  Wujun Shi, Benjamin J. Wieder, H. L. Meyerheim, Yan Sun, Yang Zhang, Yiwei Li, Lei Shen, Yanpeng Qi, Lexian Yang, Jagannath Jena, Peter Werner, Klaus Koepernik, Stuart Parkin, Yulin Chen, Claudia Felser, B. Andrei Bernevig, Zhijun Wang ·

Topological physics and strong electron-electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the single-particle band structure is modified by strong interactions. We here demonstrate that the room-temperature phase of (TaSe$_4$)$_2$I is a Weyl semimetal with 24 pairs of Weyl nodes. Owing to its quasi-1D structure, (TaSe$_4$)$_2$I hosts an established CDW instability just below room temperature. Using X-ray diffraction, angle-resolved photoemission spectroscopy, and first-principles calculations, we find that the CDW in (TaSe$_4$)$_2$I couples the bulk Weyl points and opens a band gap. The correlation-driven topological phase transition in (TaSe$_4$)$_2$I provides a route towards observing condensed-matter realizations of axion electrodynamics in the gapped regime, topological chiral response effects in the semimetallic phase, and represents an avenue for exploring the interplay of correlations and topology in a solid-state material.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Materials Science Strongly Correlated Electrons