A Closer Look at Branch Classifiers of Multi-exit Architectures

28 Apr 2022  ·  Shaohui Lin, Bo Ji, Rongrong Ji, Angela Yao ·

Multi-exit architectures consist of a backbone and branch classifiers that offer shortened inference pathways to reduce the run-time of deep neural networks. In this paper, we analyze different branching patterns that vary in their allocation of computational complexity for the branch classifiers. Constant-complexity branching keeps all branches the same, while complexity-increasing and complexity-decreasing branching place more complex branches later or earlier in the backbone respectively. Through extensive experimentation on multiple backbones and datasets, we find that complexity-decreasing branches are more effective than constant-complexity or complexity-increasing branches, which achieve the best accuracy-cost trade-off. We investigate a cause by using knowledge consistency to probe the effect of adding branches onto a backbone. Our findings show that complexity-decreasing branching yields the least disruption to the feature abstraction hierarchy of the backbone, which explains the effectiveness of the branching patterns.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here