A Coach-Player Framework for Dynamic Team Composition

1 Jan 2021  ·  Bo Liu, Qiang Liu, Peter Stone, Animesh Garg, Yuke Zhu, Anima Anandkumar ·

In real-world multi-agent teams, agents with different capabilities may join or leave "on the fly" without altering the team's overarching goals. Coordinating teams with such dynamic composition remains a challenging problem: the optimal team strategy may vary with its composition. Inspired by real-world team sports, we propose a coach-player framework to tackle this problem. We assume that the players only have a partial view of the environment, while the coach has a complete view. The coach coordinates the players by distributing individual strategies. Specifically, we 1) propose an attention mechanism for both the players and the coach; 2) incorporate a variational objective to regularize learning; and 3) design an adaptive communication method to let the coach decide when to communicate with different players. Our attention mechanism on the players and the coach allows for a varying number of heterogeneous agents, and can thus tackle the dynamic team composition. We validate our methods on resource collection tasks in multi-agent particle environment. We demonstrate zero-shot generalization to new team compositions with varying numbers of heterogeneous agents. The performance of our method is comparable or even better than the setting where all players have a full view of the environment, but no coach. Moreover, we see that the performance stays nearly the same even when the coach communicates as little as 13% of the time using our adaptive communication strategy. These results demonstrate the significance of a coach to coordinate players in dynamic teams.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here