A Comparative Study of Meta-heuristic Algorithms for Solving Quadratic Assignment Problem

Quadratic Assignment Problem (QAP) is an NP-hard combinatorial optimization problem, therefore, solving the QAP requires applying one or more of the meta-heuristic algorithms. This paper presents a comparative study between Meta-heuristic algorithms: Genetic Algorithm, Tabu Search, and Simulated annealing for solving a real-life (QAP) and analyze their performance in terms of both runtime efficiency and solution quality... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet