A Comparative Study of Meter Detection Methods for Automated Infrastructure Inspection

24 Apr 2022  ·  Yusuke Ohtsubo, Takuto Sato, Hirohiko Sagawa ·

In order to read meter values from a camera on an autonomous inspection robot with positional errors, it is necessary to detect meter regions from the image. In this study, we developed shape-based, texture-based, and background information-based methods as meter area detection techniques and compared their effectiveness for meters of different shapes and sizes. As a result, we confirmed that the background information-based method can detect the farthest meters regardless of the shape and number of meters, and can stably detect meters with a diameter of 40px.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here