A Comparative Study of Synthetic Data Generation Methods for Grammatical Error Correction

WS 2020  ·  Max White, Alla Rozovskaya ·

Grammatical Error Correction (GEC) is concerned with correcting grammatical errors in written text. Current GEC systems, namely those leveraging statistical and neural machine translation, require large quantities of annotated training data, which can be expensive or impractical to obtain. This research compares techniques for generating synthetic data utilized by the two highest scoring submissions to the restricted and low-resource tracks in the BEA-2019 Shared Task on Grammatical Error Correction.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here