A Comparison of Decision Analysis and Expert Rules for Sequential Diagnosis

27 Mar 2013  ·  Jayant Kalagnanam, Max Henrion ·

There has long been debate about the relative merits of decision theoretic methods and heuristic rule-based approaches for reasoning under uncertainty. We report an experimental comparison of the performance of the two approaches to troubleshooting, specifically to test selection for fault diagnosis. We use as experimental testbed the problem of diagnosing motorcycle engines. The first approach employs heuristic test selection rules obtained from expert mechanics. We compare it with the optimal decision analytic algorithm for test selection which employs estimated component failure probabilities and test costs. The decision analytic algorithm was found to reduce the expected cost (i.e. time) to arrive at a diagnosis by an average of 14% relative to the expert rules. Sensitivity analysis shows the results are quite robust to inaccuracy in the probability and cost estimates. This difference suggests some interesting implications for knowledge acquisition.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here