A comprehensive review on convolutional neural network in machine fault diagnosis

13 Feb 2020  ·  Jinyang Jiao, Ming Zhao, Jing Lin, Kaixuan Liang ·

With the rapid development of manufacturing industry, machine fault diagnosis has become increasingly significant to ensure safe equipment operation and production. Consequently, multifarious approaches have been explored and developed in the past years, of which intelligent algorithms develop particularly rapidly. Convolutional neural network, as a typical representative of intelligent diagnostic models, has been extensively studied and applied in recent five years, and a large amount of literature has been published in academic journals and conference proceedings. However, there has not been a systematic review to cover these studies and make a prospect for the further research. To fill in this gap, this work attempts to review and summarize the development of the Convolutional Network based Fault Diagnosis (CNFD) approaches comprehensively. Generally, a typical CNFD framework is composed of the following steps, namely, data collection, model construction, and feature learning and decision making, thus this paper is organized by following this stream. Firstly, data collection process is described, in which several popular datasets are introduced. Then, the fundamental theory from the basic convolutional neural network to its variants is elaborated. After that, the applications of CNFD are reviewed in terms of three mainstream directions, i.e. classification, prediction and transfer diagnosis. Finally, conclusions and prospects are presented to point out the characteristics of current development, facing challenges and future trends. Last but not least, it is expected that this work would provide convenience and inspire further exploration for researchers in this field.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here