A comprehensive study of speech separation: spectrogram vs waveform separation

17 May 2019  ·  Fahimeh Bahmaninezhad, Jian Wu, Rongzhi Gu, Shi-Xiong Zhang, Yong Xu, Meng Yu, Dong Yu ·

Speech separation has been studied widely for single-channel close-talk microphone recordings over the past few years; developed solutions are mostly in frequency-domain. Recently, a raw audio waveform separation network (TasNet) is introduced for single-channel data, with achieving high Si-SNR (scale-invariant source-to-noise ratio) and SDR (source-to-distortion ratio) comparing against the state-of-the-art solution in frequency-domain. In this study, we incorporate effective components of the TasNet into a frequency-domain separation method. We compare both for alternative scenarios. We introduce a solution for directly optimizing the separation criterion in frequency-domain networks. In addition to speech separation objective and subjective measurements, we evaluate the separation performance on a speech recognition task as well. We study the speech separation problem for far-field data (more similar to naturalistic audio streams) and develop multi-channel solutions for both frequency and time-domain separators with utilizing spectral, spatial and speaker location information. For our experiments, we simulated multi-channel spatialized reverberate WSJ0-2mix dataset. Our experimental results show that spectrogram separation can achieve competitive performance with better network design. Multi-channel framework as well is shown to improve the single-channel performance relatively up to +35.5% and +46% in terms of WER and SDR, respectively.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here