A Computationally Efficient Limited Memory CMA-ES for Large Scale Optimization

21 Apr 2014  ·  Ilya Loshchilov ·

We propose a computationally efficient limited memory Covariance Matrix Adaptation Evolution Strategy for large scale optimization, which we call the LM-CMA-ES. The LM-CMA-ES is a stochastic, derivative-free algorithm for numerical optimization of non-linear, non-convex optimization problems in continuous domain. Inspired by the limited memory BFGS method of Liu and Nocedal (1989), the LM-CMA-ES samples candidate solutions according to a covariance matrix reproduced from $m$ direction vectors selected during the optimization process. The decomposition of the covariance matrix into Cholesky factors allows to reduce the time and memory complexity of the sampling to $O(mn)$, where $n$ is the number of decision variables. When $n$ is large (e.g., $n$ > 1000), even relatively small values of $m$ (e.g., $m=20,30$) are sufficient to efficiently solve fully non-separable problems and to reduce the overall run-time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here