A Constant-Factor Bi-Criteria Approximation Guarantee for $k$-means++

16 May 2016  ·  Dennis Wei ·

This paper studies the $k$-means++ algorithm for clustering as well as the class of $D^\ell$ sampling algorithms to which $k$-means++ belongs. It is shown that for any constant factor $\beta > 1$, selecting $\beta k$ cluster centers by $D^\ell$ sampling yields a constant-factor approximation to the optimal clustering with $k$ centers, in expectation and without conditions on the dataset. This result extends the previously known $O(\log k)$ guarantee for the case $\beta = 1$ to the constant-factor bi-criteria regime. It also improves upon an existing constant-factor bi-criteria result that holds only with constant probability.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here