A Context-aware Natural Language Generator for Dialogue Systems

25 Aug 2016  ·  Ondřej Dušek, Filip Jurčíček ·

We present a novel natural language generation system for spoken dialogue systems capable of entraining (adapting) to users' way of speaking, providing contextually appropriate responses. The generator is based on recurrent neural networks and the sequence-to-sequence approach. It is fully trainable from data which include preceding context along with responses to be generated. We show that the context-aware generator yields significant improvements over the baseline in both automatic metrics and a human pairwise preference test.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here