A data-driven model order reduction approach for Stokes flow through random porous media

21 Jun 2018Constantin GrigoPhaedon-Stelios Koutsourelakis

Direct numerical simulation of Stokes flow through an impermeable, rigid body matrix by finite elements requires meshes fine enough to resolve the pore-size scale and is thus a computationally expensive task. The cost is significantly amplified when randomness in the pore microstructure is present and therefore multiple simulations need to be carried out... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet