A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates

25 Apr 2017Zhi LiWei ShiMing Yan

This paper proposes a novel proximal-gradient algorithm for a decentralized optimization problem with a composite objective containing smooth and non-smooth terms. Specifically, the smooth and nonsmooth terms are dealt with by gradient and proximal updates, respectively... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.