Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks

3 Jun 2019  ·  Cecilia Jarne, Rodrigo Laje ·

Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure. In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli. Our results show that different RNNs can solve the same task by converging to different underlying dynamics and also how the performance gracefully degrades as either network size is decreased, interval duration is increased, or connectivity damage is increased. For the considered tasks, we explored how robust the network obtained after training can be according to task parameterization. In the process, we developed a framework that can be useful to parameterize other tasks of interest in computational neuroscience. Our results are useful to quantify different aspects of the models, which are normally used as black boxes and need to be understood in order to model the biological response of cerebral cortex areas.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here