A Dimension-free Algorithm for Contextual Continuum-armed Bandits

15 Jul 2019  ·  Wenhao Li, Ningyuan Chen, L. Jeff Hong ·

In contextual continuum-armed bandits, the contexts $x$ and the arms $y$ are both continuous and drawn from high-dimensional spaces. The payoff function to learn $f(x,y)$ does not have a particular parametric form. The literature has shown that for Lipschitz-continuous functions, the optimal regret is $\tilde{O}(T^{\frac{d_x+d_y+1}{d_x+d_y+2}})$, where $d_x$ and $d_y$ are the dimensions of contexts and arms, and thus suffers from the curse of dimensionality. We develop an algorithm that achieves regret $\tilde{O}(T^{\frac{d_x+1}{d_x+2}})$ when $f$ is globally concave in $y$. The global concavity is a common assumption in many applications. The algorithm is based on stochastic approximation and estimates the gradient information in an online fashion. Our results generate a valuable insight that the curse of dimensionality of the arms can be overcome with some mild structures of the payoff function.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here