A Distance-Based Decision in the Credal Level

28 Jan 2015  ·  Amira Essaid, Arnaud Martin, Grégory Smits, Boutheina Ben Yaghlane ·

Belief function theory provides a flexible way to combine information provided by different sources. This combination is usually followed by a decision making which can be handled by a range of decision rules. Some rules help to choose the most likely hypothesis. Others allow that a decision is made on a set of hypotheses. In [6], we proposed a decision rule based on a distance measure. First, in this paper, we aim to demonstrate that our proposed decision rule is a particular case of the rule proposed in [4]. Second, we give experiments showing that our rule is able to decide on a set of hypotheses. Some experiments are handled on a set of mass functions generated randomly, others on real databases.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here