A Distributed Adaptive Algorithm for Node-Specific Signal Fusion Problems in Wireless Sensor Networks

2 Nov 2022  ·  Cem Ates Musluoglu, Alexander Bertrand ·

Wireless sensor networks consist of sensor nodes that are physically distributed over different locations. Spatial filtering procedures exploit the spatial correlation across these sensor signals to fuse them into a filtered signal satisfying some optimality condition. However, gathering the raw sensor data in a fusion center to solve the problem in a centralized way would lead to high energy and communication costs. The distributed adaptive signal fusion (DASF) framework has been proposed as a generic method to solve these signal fusion problems in a distributed fashion, which reduces the communication and energy costs in the network. The DASF framework assumes that there is a common goal across the nodes, i.e., the optimal filter is shared across the network. However, many applications require a node-specific objective, while all these node-specific objectives are still related via a common latent data model. In this work, we propose the DANSF algorithm which builds upon the DASF framework, and extends it to allow for node-specific spatial filtering problems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here