A Document-Level Neural Machine Translation Model with Dynamic Caching Guided by Theme-Rheme Information

Research on document-level Neural Machine Translation (NMT) models has attracted increasing attention in recent years. Although the proposed works have proved that the inter-sentence information is helpful for improving the performance of the NMT models, what information should be regarded as context remains ambiguous. To solve this problem, we proposed a novel cache-based document-level NMT model which conducts dynamic caching guided by theme-rheme information. The experiments on NIST evaluation sets demonstrate that our proposed model achieves substantial improvements over the state-of-the-art baseline NMT models. As far as we know, we are the first to introduce theme-rheme theory into the field of machine translation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here