A Fast Algorithm for Onboard Atmospheric Powered Descent Guidance

9 Sep 2022  ·  Yushu Chen, Guangwen Yang, Lu Wang, Qingzhong Gan, Haipeng Chen, Quanyong Xu ·

Atmospheric powered descent guidance can be solved by successive convexification; however, its onboard application is impeded by the sharp increase in computation caused by nonlinear aerodynamic forces. The problem has to be converted into a sequence of convex subproblems instead of a single convex problem when aerodynamic forces are ignored. Besides, each subproblem is significantly more complicated, which increases computation. A fast real-time interior point method was presented to solve the correlated convex subproblems onboard in the work. The main contributions are as follows: Firstly, an algorithm was proposed to accelerate the solution of linear systems that cost most of the computation in each iterative step by exploiting the specific problem structure. Secondly, a warm-starting scheme was introduced to refine the initial value of a subproblem with a rough approximate solution of the former subproblem, which lessened the iterative steps required for each subproblem. The method proposed reduced the run time by a factor of 9 compared with the fastest publicly available solver tested in Monte Carlo simulations to evaluate the efficiency of solvers. Runtimes on the order of 0.6 s are achieved on a radiation-hardened flight processor, which demonstrated the potential of the real-time onboard application.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here