A Federated Deep Learning Framework for Cell-Free RSMA Networks

13 Jan 2025  ·  S. Ali Mousavi, Mehdi Monemi, Reza Mohseni, Matti Latva-aho ·

Next-generation wireless networks are poised to benefit significantly from the integration of three key technologies (KTs): Rate-Splitting Multiple Access (RSMA), cell-free architectures, and federated learning. Each of these technologies offers distinct advantages in terms of security, robustness, and distributed structure. In this paper, we propose a novel cell-free network architecture that incorporates RSMA and employs machine learning techniques within a federated framework. This combination leverages the strengths of each KT, creating a synergistic effect that maximizes the benefits of security, robustness, and distributed structure. We formally formulate the access point (AP) selection and precoder design for max-min rate optimization in a cell-free MIMO RSMA network. Our proposed solution scheme involves a three-block procedure. The first block trains deep reinforcement learning (DRL) neural networks to obtain RSMA precoders, assuming full connectivity between APs and user equipments (UEs). The second block uses these precoders and principal component analysis (PCA) to assign APs to UEs by removing a subset of AP-UE connections. The final block fine-tunes the RSMA precoders by incorporating the associated APs into a second DRL network. To leverage the distributed nature of the cell-free network, this process is implemented in a Federated Deep Reinforcement Learning (FDRL) structure operating through the cooperation of APs and a central processing unit (CPU). Simulation results demonstrate that the proposed FDRL approach performs comparably to a benchmark centralized DRL scheme. Our FDRL approach, provides a balanced trade-off, maintaining high performance with enhanced security and reduced processing demands.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here