A Forest Mixture Bound for Block-Free Parallel Inference

17 May 2018  ·  Neal Lawton, Aram Galstyan, Greg Ver Steeg ·

Coordinate ascent variational inference is an important algorithm for inference in probabilistic models, but it is slow because it updates only a single variable at a time. Block coordinate methods perform inference faster by updating blocks of variables in parallel. However, the speed and stability of these algorithms depends on how the variables are partitioned into blocks. In this paper, we give a stable parallel algorithm for inference in deep exponential families that doesn't require the variables to be partitioned into blocks. We achieve this by lower bounding the ELBO by a new objective we call the forest mixture bound (FM bound) that separates the inference problem for variables within a hidden layer. We apply this to the simple case when all random variables are Gaussian and show empirically that the algorithm converges faster for models that are inherently more forest-like.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.