A Formally Robust Time Series Distance Metric

18 Aug 2020  ·  Maximilian Toller, Bernhard C. Geiger, Roman Kern ·

Distance-based classification is among the most competitive classification methods for time series data. The most critical component of distance-based classification is the selected distance function. Past research has proposed various different distance metrics or measures dedicated to particular aspects of real-world time series data, yet there is an important aspect that has not been considered so far: Robustness against arbitrary data contamination. In this work, we propose a novel distance metric that is robust against arbitrarily "bad" contamination and has a worst-case computational complexity of $\mathcal{O}(n\log n)$. We formally argue why our proposed metric is robust, and demonstrate in an empirical evaluation that the metric yields competitive classification accuracy when applied in k-Nearest Neighbor time series classification.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here