A Game-Theoretic Approach to Hypergraph Clustering

NeurIPS 2009  ·  Samuel R. Bulò, Marcello Pelillo ·

Hypergraph clustering refers to the process of extracting maximally coherent groups from a set of objects using high-order (rather than pairwise) similarities. Traditional approaches to this problem are based on the idea of partitioning the input data into a user-defined number of classes, thereby obtaining the clusters as a by-product of the partitioning process. In this paper, we provide a radically different perspective to the problem. In contrast to the classical approach, we attempt to provide a meaningful formalization of the very notion of a cluster and we show that game theory offers an attractive and unexplored perspective that serves well our purpose. Specifically, we show that the hypergraph clustering problem can be naturally cast into a non-cooperative multi-player ``clustering game, whereby the notion of a cluster is equivalent to a classical game-theoretic equilibrium concept. From the computational viewpoint, we show that the problem of finding the equilibria of our clustering game is equivalent to locally optimizing a polynomial function over the standard simplex, and we provide a discrete-time dynamics to perform this optimization. Experiments are presented which show the superiority of our approach over state-of-the-art hypergraph clustering techniques.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here