A Gaussian Markov alternative to fractional Brownian motion for pricing financial derivatives

11 Aug 2016  ·  Conus Daniel, Wildman Mackenzie ·

Replacing Black-Scholes' driving process, Brownian motion, with fractional Brownian motion allows for incorporation of a past dependency of stock prices but faces a few major downfalls, including the occurrence of arbitrage when implemented in the financial market. We present the development, testing, and implementation of a simplified alternative to using fractional Brownian motion for pricing derivatives... By relaxing the assumption of past independence of Brownian motion but retaining the Markovian property, we are developing a competing model that retains the mathematical simplicity of the standard Black-Scholes model but also has the improved accuracy of allowing for past dependence. This is achieved by replacing Black-Scholes' underlying process, Brownian motion, with a particular Gaussian Markov process, proposed by Vladimir Dobri\'{c} and Francisco Ojeda. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here