A Gaussian Process perspective on Convolutional Neural Networks

25 Oct 2018  ·  Anastasia Borovykh ·

In this paper we cast the well-known convolutional neural network in a Gaussian process perspective. In this way we hope to gain additional insights into the performance of convolutional networks, in particular understand under what circumstances they tend to perform well and what assumptions are implicitly made in the network. While for fully-connected networks the properties of convergence to Gaussian processes have been studied extensively, little is known about situations in which the output from a convolutional network approaches a multivariate normal distribution.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here