A General 3D Space-Time-Frequency Non-Stationary THz Channel Model for 6G Ultra-Massive MIMO Wireless Communication Systems

20 Apr 2021  ·  Jun Wang, Cheng-Xiang Wang, Jie Huang, Haiming Wang, Xiqi Gao ·

In this paper, a novel three-dimensional (3D) space-time-frequency (STF) non-stationary geometry-based stochastic model (GBSM) is proposed for the sixth generation (6G) terahertz (THz) wireless communication systems. The proposed THz channel model is very general having the capability to capture different channel characteristics in multiple THz application scenarios such as indoor scenarios, device-to-device (D2D) communications, ultra-massive multiple-input multiple-output (MIMO) communications, and long traveling paths of users. Also, the generality of the proposed channel model is demonstrated by the fact that it can easily be reduced to different simplified channel models to fit specific scenarios by properly adjusting model parameters. The proposed general channel model takes into consideration the non-stationarities in space, time, and frequency domains caused by ultra-massive MIMO, long traveling paths, and large bandwidths of THz communications, respectively. Statistical properties of the proposed general THz channel model are investigated. The accuracy and generality of the proposed channel model are verified by comparing the simulation results of the relative angle spread and root mean square (RMS) delay spread with corresponding channel measurements.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here