A General Analysis Framework of Lower Complexity Bounds for Finite-Sum Optimization

22 Aug 2019  ·  Guangzeng Xie, Luo Luo, Zhihua Zhang ·

This paper studies the lower bound complexity for the optimization problem whose objective function is the average of $n$ individual smooth convex functions. We consider the algorithm which gets access to gradient and proximal oracle for each individual component. For the strongly-convex case, we prove such an algorithm can not reach an $\varepsilon$-suboptimal point in fewer than $\Omega((n+\sqrt{\kappa n})\log(1/\varepsilon))$ iterations, where $\kappa$ is the condition number of the objective function. This lower bound is tighter than previous results and perfectly matches the upper bound of the existing proximal incremental first-order oracle algorithm Point-SAGA. We develop a novel construction to show the above result, which partitions the tridiagonal matrix of classical examples into $n$ groups. This construction is friendly to the analysis of proximal oracle and also could be used to general convex and average smooth cases naturally.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here