A General Approach to Domain Adaptation with Applications in Astronomy

20 Dec 2018  ·  Ricardo Vilalta, Kinjal Dhar Gupta, Dainis Boumber, Mikhail M. Meskhi ·

The ability to build a model on a source task and subsequently adapt such model on a new target task is a pervasive need in many astronomical applications. The problem is generally known as transfer learning in machine learning, where domain adaptation is a popular scenario. An example is to build a predictive model on spectroscopic data to identify Supernovae IA, while subsequently trying to adapt such model on photometric data. In this paper we propose a new general approach to domain adaptation that does not rely on the proximity of source and target distributions. Instead we simply assume a strong similarity in model complexity across domains, and use active learning to mitigate the dependency on source examples. Our work leads to a new formulation for the likelihood as a function of empirical error using a theoretical learning bound; the result is a novel mapping from generalization error to a likelihood estimation. Results using two real astronomical problems, Supernova Ia classification and identification of Mars landforms, show two main advantages with our approach: increased accuracy performance and substantial savings in computational cost.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here