A General Computational Framework to Measure the Expressiveness of Complex Networks Using a Tighter Upper Bound of Linear Regions

The expressiveness of deep neural network (DNN) is a perspective to understandthe surprising performance of DNN. The number of linear regions, i.e. pieces thata piece-wise-linear function represented by a DNN, is generally used to measurethe expressiveness... And the upper bound of regions number partitioned by a rec-tifier network, instead of the number itself, is a more practical measurement ofexpressiveness of a rectifier DNN. In this work, we propose a new and tighter up-per bound of regions number. Inspired by the proof of this upper bound and theframework of matrix computation in Hinz & Van de Geer (2019), we propose ageneral computational approach to compute a tight upper bound of regions numberfor theoretically any network structures (e.g. DNN with all kind of skip connec-tions and residual structures). Our experiments show our upper bound is tighterthan existing ones, and explain why skip connections and residual structures canimprove network performance. read more

Results in Papers With Code
(↓ scroll down to see all results)