We investigate the use of transformer sequence models as dynamics models (TDMs) for control. We find that TDMs exhibit strong generalization capabilities to unseen environments, both in a few-shot setting, where a generalist TDM is fine-tuned with small amounts of data from the target environment, and in a zero-shot setting, where a generalist TDM is applied to an unseen environment without any further training. Here, we demonstrate that generalizing system dynamics can work much better than generalizing optimal behavior directly as a policy. Additional results show that TDMs also perform well in a single-environment learning setting when compared to a number of baseline models. These properties make TDMs a promising ingredient for a foundation model of control.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here