A Generalization of Submodular Cover via the Diminishing Return Property on the Integer Lattice

NeurIPS 2015  ·  Tasuku Soma, Yuichi Yoshida ·

We consider a generalization of the submodular cover problem based on the concept of diminishing return property on the integer lattice. We are motivated by real scenarios in machine learning that cannot be captured by (traditional) submodular set functions. We show that the generalized submodular cover problem can be applied to various problems and devise a bicriteria approximation algorithm. Our algorithm is guaranteed to output a log-factor approximate solution that satisfies the constraints with the desired accuracy. The running time of our algorithm is roughly $O(n\log (nr) \log{r})$, where $n$ is the size of the ground set and $r$ is the maximum value of a coordinate. The dependency on $r$ is exponentially better than the naive reduction algorithms. Several experiments on real and artificial datasets demonstrate that the solution quality of our algorithm is comparable to naive algorithms, while the running time is several orders of magnitude faster.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here