Paper

A Generative Framework for Zero-Shot Learning with Adversarial Domain Adaptation

We present a domain adaptation based generative framework for zero-shot learning. Our framework addresses the problem of domain shift between the seen and unseen class distributions in zero-shot learning and minimizes the shift by developing a generative model trained via adversarial domain adaptation. Our approach is based on end-to-end learning of the class distributions of seen classes and unseen classes. To enable the model to learn the class distributions of unseen classes, we parameterize these class distributions in terms of the class attribute information (which is available for both seen and unseen classes). This provides a very simple way to learn the class distribution of any unseen class, given only its class attribute information, and no labeled training data. Training this model with adversarial domain adaptation further provides robustness against the distribution mismatch between the data from seen and unseen classes. Our approach also provides a novel way for training neural net based classifiers to overcome the hubness problem in zero-shot learning. Through a comprehensive set of experiments, we show that our model yields superior accuracies as compared to various state-of-the-art zero shot learning models, on a variety of benchmark datasets. Code for the experiments is available at github.com/vkkhare/ZSL-ADA

Results in Papers With Code
(↓ scroll down to see all results)