A gradient estimator via L1-randomization for online zero-order optimization with two point feedback

27 May 2022  ·  Arya Akhavan, Evgenii Chzhen, Massimiliano Pontil, Alexandre B. Tsybakov ·

This work studies online zero-order optimization of convex and Lipschitz functions. We present a novel gradient estimator based on two function evaluations and randomization on the $\ell_1$-sphere. Considering different geometries of feasible sets and Lipschitz assumptions we analyse online dual averaging algorithm with our estimator in place of the usual gradient. We consider two types of assumptions on the noise of the zero-order oracle: canceling noise and adversarial noise. We provide an anytime and completely data-driven algorithm, which is adaptive to all parameters of the problem. In the case of canceling noise that was previously studied in the literature, our guarantees are either comparable or better than state-of-the-art bounds obtained by Duchi et al. (2015) and Shamir (2017) for non-adaptive algorithms. Our analysis is based on deriving a new weighted Poincar\'e type inequality for the uniform measure on the $\ell_1$-sphere with explicit constants, which may be of independent interest.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here