A Graph Autoencoder Approach to Causal Structure Learning

18 Nov 2019  ·  Ignavier Ng, Shengyu Zhu, Zhitang Chen, Zhuangyan Fang ·

Causal structure learning has been a challenging task in the past decades and several mainstream approaches such as constraint- and score-based methods have been studied with theoretical guarantees. Recently, a new approach has transformed the combinatorial structure learning problem into a continuous one and then solved it using gradient-based optimization methods. Following the recent state-of-the-arts, we propose a new gradient-based method to learn causal structures from observational data. The proposed method generalizes the recent gradient-based methods to a graph autoencoder framework that allows nonlinear structural equation models and is easily applicable to vector-valued variables. We demonstrate that on synthetic datasets, our proposed method outperforms other gradient-based methods significantly, especially on large causal graphs. We further investigate the scalability and efficiency of our method, and observe a near linear training time when scaling up the graph size.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods